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Abstract

We introduce the robust optimization models for two variants of stable tail-adjusted re-
turn ratio (STARR), one with mixed conditional value-at-risk (MCVaR) and the other
with deviation MCVaR (DMCVaR), under joint ambiguity in the distribution modeled
using copulas. The two models are shown to be computationally tractable linear pro-
grams. We apply a two-step procedure to capture the joint dependence structure among
the assets. We first extract the filtered residuals from the return series of each asset
using AutoRegressive Moving Average Glosten Jagannathan Runkle Generalized Autore-
gressive Conditional Heteroscedastic (ARMA-GJR-GARCH) model. Subsequently, we
exploit the regular vine copulas to model the joint dependence among the transformed
residuals. The tree structure in the regular vines is accomplished using Kendall’s tau.
We compare the performance of the proposed two robust models with their conventional
counterparts when the joint distribution in the latter is described using Gaussian copula
only. We also examine the performance of the obtained portfolios against those from the
Markowitz model and multivariate GARCH models using the rolling window analysis. We
illustrate the superior performance of the proposed robust models than their conventional
counterpart models on excess mean returns, Sortino ratio, Rachev ratio, VaR ratio, and
Treynor ratio, on three data sets comprising of indices across the globe.

Keywords: Portfolio optimization, robust portfolio optimization, STARR ratio, mixed
conditional value-at-risk, ARMA-GJR-GARCH model, regular vine copula

1. Introduction

Since the beginning of the era of modern portfolio theory with the pioneering work of
Markowitz [53], where the measure of risk in investment is taken to be the standard
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deviation of return distribution, the literature has seen a proliferation of several reward-
risk optimization models. These models have a common aim to find an optimal portfolio of
maximum return and minimum risk. The bi-objective models generally are transformed
into single objective problems of maximizing return given an upper bound on risk or
minimizing risk given a lower bound on the return or maximizing the combined return-
risk utility function for a given risk-aversion parameter. The optimal solutions of the
resulting problems are sensitive to the choice of the upper bound, lower bound, and risk-
averse parameter, respectively.

Another extensively studied approach in the very same context is the reward-risk ratio
optimization. Most of the ratio optimization models can be transformed to linear or
convex optimization problems under some mild conditions and hence possess a computa-
tional advantage. The first such ratio is Sharpe ratio [69] defined as the ratio of the mean
excess return from the risk-free rate of return to the standard deviation of the portfolio’s
returns. However, in the financial markets, the downside risk causes more pain than the
upside gain. The big meltdowns in the equity markets are known to leave a significant
imprint on wealth. The key to winning in equities investment is knowing how to avoid
substantial losses and provide the downside risk protection to the portfolio. With this
view, the mean excess return to the downside deviation of the portfolio’s return is defined
and called Sortino ratio ([71], [72]). The stable tail-adjusted return ratio (STARR ratio)
[54] which measures the ex-ante risk-adjusted return by including the downside risk in
the form of expected tail loss more popularly known by conditional value-at-risk (CVaR),
can be an excellent proxy to limit the downside risk. The Rachev ratio, the general-
ized Rachev ratio [14], and Omega ratio [48] are some other reward-risk ratios which use
downside risk. Among these, the first two use CVaR.

Unlike the Rachev and its generalized case where their optimization models result in the
mixed-integer linear programs, the optimization problem of maximizing STARR ratio is
a linear program. This computational advantage constitutes one of the reasons for us to
focus on the STARR ratio in the present research. Another of our recent work [36] defines
two variants of the STARR ratio and study their application to the problem of enhanced
indexing.

Portfolio returns typically follow a multivariate distribution whose validity not only de-
pends on the correct estimation of the marginal distribution of each of its constitutes but
also on how correctly one captures the joint dependence structure among them. Now it is
well recognized that the dependence structure among the financial assets is asymmetric,
heavy-tailed, and non-linear. Copula functions are efficient tools to model these stylized
facts in the joint dependence structure.

Copula models work sequentially in two steps: marginal distribution modeling, and de-
pendence modeling. The marginal distribution modeling specifies the functional form of
the marginal distribution of returns of each financial asset accounting for the detailed
stylized features and the dependence modeling determines the best copula function to
capture the actual dependence structure among them. However, a single copula function
could not encapsulate the dynamical changes in the trends of markets. In this paper,
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taking motivation from the studies on robust optimization under data ambiguity1, we
propose to extend our recent work [36] on portfolio selection by introducing robustness
concerning the change in the copula functions in the two variants of the STARR ratio
optimization models.

In [36], we present two variants of STARR ratio with mixed CVaR (MCVaR) and devia-
tion MCVaR (DMCVaR). The MCVaR is the weighted sum of multiple CVaRs at different
confidence levels while DMCVaR is the deviation version of MCVaR obtained by replacing
the random variable in MCVaR by its dispersion from its expected value. The MCVaR
and DMCVaR inherit more information than a simple CVaR while enjoying all the the-
oretical properties of the latter. We can approximate the optimization of the STARR
ratio with MCVaR and DMCVaR by linear programs using finite realizations from the
return distribution of portfolio. We propose to study the worst case analysis for both
the variants of the STARR ratio optimization using the robust optimization framework
concerning copulas. The models involve maximization of the minimum (or worst case)
value of the STARR ratios computed over the multiple prior, and the copula functions
enable to capture the dependence structure among returns.

We follow a two-step procedure to model the dependence structure among the returns
of assets. We first fit the marginal distribution in the returns of each asset by ARMA-
GJR-GARCH 2 model. We then use the regular vines on the transformed residuals of the
marginals and accomplish the tree structure on them using Kendall’s tau.

To carry out the performance analysis of the proposed models, we consider the conven-
tional STARR models in which only the multivariate Gaussian copula is used to model
the residuals in the returns. We also compare the performance of the portfolios from the
proposed models with that of the Markowitz model and multivariate GARCH models,
specifically symmetric Dynamic Conditional Correlation (DCC) GARCH and asymmet-
ric DCC (aDCC) GARCH models using the rolling window scheme. The empirical study
is carried out on three data sets comprising of prices of various global indices from different
periods.

Contributions

The contribution of the paper lies in studying the worst case analysis for the reward-
risk ratio in the framework of robust portfolio optimization concerning the change in
copula. We present the robust versions of two STARR ratios models with MCVaR and
DMCVaR measures. The empirical analysis on three different datasets shows the superior
performance of the proposed worst-case models over their conventional counterparts (when
only Gaussian copula is applied), Markowitz model and multivariate GARCH models, on
several performance indicators including, excess mean return from the 1/m naive portfolio,
Sortino ratio, Rachev ratio, VaR ratio, and Treynor ratio. To the best of our knowledge,

1The probability model is unknown under data ambiguity [51]
2AutoRegressive Moving Average Glosten Jagannathan Runkle Generalized AutoRegressive Condi-

tional Heteroscedasticity
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this research is the first attempt to apply the robust optimization concerning copula to
the STARR ratio optimization problems.

The remaining organization of the paper is as follows. Section 2 presents the literature
on reward-risk ratios, copulas, and robust mean-risk formulations. Section 3 narrates the
copula theory along with the regular vines. Section 4 introduces the robust optimization
models for two variants of STARR ratio and their equivalent linear programming prob-
lems. Section 5 explains the methodology and data used in the empirical analysis. Section
6 presents the performance analysis of the proposed models, followed by the conclusion
in Section 7.

2. Literature Review

In this section, we first survey the literature on the reward-risk ratio portfolio optimization
models. We then go on to provide the related research on copulas and vine copulas.
Finally, we briefly touched upon the existing works on robust optimization with data
ambiguity. The documentation on these topics is enormous and beyond the scope of the
paper to cite all. We shall be referring to only those which are strictly relevant to our
present study.

2.1. Reward-Risk Ratio

Unlike mean-risk models, the maximization of reward-risk ratio does not require prior
knowledge of risk aptitude of an investor to produce an optimal ending portfolio. With
the progress of risk management tools, several researchers ([30], [31], [73]) develop different
ratio optimization models. The famous ratios include Treynor ratio [74], Sharpe ratio [69],
Sortino ratio [72], Omega ratio [48], VaR ratio, STARR ratio ([64] and references therein),
Rachev ratio [14] and generalized Rachev ratio. Sortino ratio improves the Sharpe ratio
by incorporating square root of semi-variance to measure volatility and thus penalizing
only the under-achievement of a portfolio from the mean return. On the other hands, the
VaR, STARR, Rachev and generalized Rachev ratios focus on the risk of extreme losses.
Among these, the STARR ratio is studied widely due to the computational advantage it
offers on account of being a quasi-concave function.

Stoyanov et al. [73] discuss a variety of reward-risk ratios in detail. They categorized
ratios in the groups of coherent and aggressive coherent ratios according to the coherent
conditions fulfilled by the reward and risk functions separately. Further, they discuss
the computational complexity of each of the ratio depending upon the concavity and
convexity properties satisfy by the reward and risk functions.

Rachev et al. [63] compare momentum strategies based on various reward-risk ratios with
cumulative return approach. They report that although the cumulative return based
strategy produces a maximum return, it does not pay attention to risk and thus fails to
provide better risk-adjusted returns compare to the reward-risk based strategy. They also
specify that ratios using alternative risk measures perform better than the Sharpe ratio
due to the non-normality in the assets return (see, [30] also).
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Cvitanić et al. [22] extend the ratio optimization model from a single period to a multi-
period investment horizon. They consider a continuous-time complete-market settings and
employ martingale methods to solve variance-minimizing policy subject to a constraint
that the expected terminal wealth equals some given level, sitting on the initial date.

Among the recent applications of ratio optimization, include Omega ratio optimization
by Sharma et al. [68] and Guastaroba et al. [38]. Sharma et al. [68] replace the fixed
threshold with a distribution based limit in Omega ratio and study its worst-case analysis
under mixed, box, and ellipsoidal uncertainty sets. Guastaroba et al. [38] apply the
Omega ratio to the problem of enhanced indexing.

The rationality of portfolio return largely depends on how one captures the correct de-
pendence structure among its constituent assets. The multivariate Gaussian distribution
is commonly used to accomplish this task. The two limitations in using it are its symmet-
ric nature and utilizing linear correlation to measure linear dependence. In fact, returns
from assets have historically shown a propensity not to follow the Gaussian distribution.
Studies ([6], [21], [40]) indicate that asset returns exhibit stronger co-movements in the
down markets than the up markets and hence the dependence among them is asymmet-
ric, nonlinear,3 negatively skewed and fatter tails. The multivariate Gaussian distribution
fails to capture these stylized features. The Gaussian distribution also fails to describe the
marginal distributions because of asymmetric and leptokurtic returns, and time-varying
volatility in them.

Copulas are multivariate distribution functions having one-dimensional marginal distri-
butions uniformly distributed on the interval [0, 1]. Copulas capture the dependence
structure in the marginal distributions of the random variables instead of working di-
rectly with the random variables themselves. The flexibility of copulas and their easy
calibration make them widely applicable to problems of finance. The Basel II accord and
Solvency II directives, the two respective regulatory frameworks for banks and insurance,
emphasize utilizing copulas for aggregating various forms of risks. The Basel II accord
encourages banks to maintain a minimum capital level calculated from their market risk,
credit risk, and operational risk, taken together ([1]). Banks and financial institutions
usually establish a high-dimensional joint distribution to model their risks computed by
percentile of loss distributions at some confidence level. Since copulas can work directly
on percentile measures of the loss distributions, they are more suitable for aggregating
the financial risks.

The mathematical and statistical perspectives of copulas can be traced in the studies
of Nelsen [57] and Joe [42]. Embrechts et al. [26] apply copulas to capture the real
dependence instead of merely using correlation which is applicable only for elliptical dis-
tributions. Cherubini et al. [20] apply copulas to study credit risk analysis and pricing of
exotic derivatives.

Jondeau and Rockinger [44] present copula-GARCH models4 to investigate dependence

3Linear correlation cannot explain concepts like co-monotonicity or rank correlation.
4GARCH models are used to address the excess kurtosis and conditional heteroscedasticity ([27], [15])

in marginal distribution modeling.
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among global financial markets. Hu [40] considers a mixed copula model to obtain vari-
ous possible patterns of dependence structure across the financial markets. Munnix and
Schafer [56] use the copula approach to figure out the tail-dependency among the con-
stituents of S&P 500.

Patton [61] analyzes the time-varying copulas where the dependence parameter is mod-
eled by an AutoRegressive Moving Average (ARMA) process to include the dynamic
dependence structure among the financial assets. With a similar motive of analyzing
the time-varying dependent structure, several authors ([21], [62], [66]) propose regime
switching models.

2.2. Vine Copulas

Albeit a rich collection of copula families available for bivariate copulas, the choice of an
appropriate copula is rather limited in high dimension. The Student’s t and Gaussian
are two widely used multivariate copulas which fail to capture asymmetry and fat tail
dependency on the financial data.

Joe [41] proposes a flexible graphical model (tree-like structures) to obtain multivariate
copula using a cascade of bivariate copulas. The so obtained copulas are called vine
copulas, and the process of getting them is called a pair copula construction (PCC).
Bedford and Cooke ([10], [11]) and Kurowicka and Cooke [50] further develop the vine
copulas.

Czado [23] and Kurowicka and Joe [43] provide good reviews on vine copulas, including
empirical applications. The vine copulas are known to perform better than the alternative
traditional multivariate models to capture the dependence structure between the random
variables specially in the financial market (see, [2], [3], [33]). Fink et. al.[32] use R-vine
Markov-switching model with different, pre-defined R-vine structures, to find periods
of “normal” and “abnormal” regimes within a data set consisting of North-American,
European and Asian markets indices.

Arreola et al. [7] apply the pair vine copula models to examine the dependence risk
characteristics of three portfolios, each having 20-stocks, from the retail, manufacturing
and gold-mining equity sectors of the Australian market. The R-vine model is found best
to capture the multivariate dependence structure of stocks in the retail and gold-mining
portfolios. De Backer et al. [24] and Kraus and Czado [49] use vine copula models for
quantile regression.

Furthermore, vine copulas have been successfully used to study the contagion effect in
the financial market. BenSäida [13] develops a tractable Markov regime-switching C-vine
and D-vine models to investigate the contagion effect between the Eurozone and the U.S.
sovereign debt markets. Recently, Goel and Mehra [35] apply the time-varying vine copula
model to study the contagion in financial deep stress periods.

However, no single copula can encapsulate the dynamical trends and changes across dif-
ferent market scenarios. The work of Kakouris and Rustem [45] motivates us to study
the worst case analysis using copulas in the framework of robust optimization.
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2.3. Robust Optimization

Robust optimization is one of the expedient methods to handle data uncertainty (caused
by estimation errors) and data ambiguity (cause due to unknown underlying probability
model) in the model. Here, we do not review the literature on data uncertainty but
instead focus on the research writings related to data ambiguity as the present study falls
in this domain.

Ben-Tal and Nemirovski [12] develop a robust convex optimization problem when the data
ambiguity is described by an ellipsoid and show that such problems admit a computational
tractable robust counterpart.

Goldfarb and Iyengar [37], Halldorsson and Tutuncu [39], and Lu [52] propose the robust
counterpart to mean-variance portfolio optimization. Goldfarb and Iyengar [37] study
three types of uncertainty in mean and the covariance matrix of asset returns. The
resulting problems are semi-definite programs or second-order cone programs.

Ghaoui et al. [34] analyze the worst case of value-at-risk (VaR) when only the partial
information of the underlying distribution is available. They consider two instances of
uncertainty sets namely polytopic uncertainty when the moment pair (mean-variance) is
only known to belong to a given polytope and component-wise bounds on the moment
pairs.

Zhu and Fukushima [76] study the worst-case CVaR under mixture, box, and ellipsoidal
uncertainty sets. The associated problems are linear programs for mixture and box uncer-
tainty sets, and second-order cone programs for the ellipsoidal case. Fabozzi et al. ([29])
review robust portfolio optimization using mean, VaR, and CVaR risk measures. Kapos
et al. [46] and Sharma et al. [68] study the worst case of Omega ratio under mixture,
box, and ellipsoidal uncertainty sets.

Kakouris and Rustem [45] perform worst-case analysis of CVaR under mixture copula
distribution. The resulting problem is a linear program. They use Gaussian copula along
with three Archimedean copulas in the mixture setting to cover a broad spectrum of
possible dependencies.

Kara et al.[47] analyze return-risk trade-off by introducing robust CVaR under paral-
lelepiped uncertainty. Their methodology provides a more stable portfolio allocation and
reduces the portfolio risk. Ozmen et al.[60] develop theory and methods for a robust
multivariate adaptive regression spline for modeling uncertain data regarding polyhedral
uncertainty.

Øksendal and Sulem [58] study a robust optimal portfolio selection problem in a non-
Markovian setting governed by a backward stochastic differential equation with jumps.
In another study, Øksendal and Sulem [59] use stochastic control theory and obtain new
results connecting the primal and its convex dual, both in non-robust and robust setting.

Baltas et al. [9] focus on robust control problems of parabolic stochastic partial differential
equations under model uncertainty.
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3. Multivariate Modeling

Understanding and quantifying dependence among assets are at a core of all modeling
efforts in financial econometrics; the root task always is to model the joint distribution of
returns of assets. Copulas are potent tools to model dependence among several random
variables. Modeling dependence via copulas can be viewed as a two-step procedure. The
first step is to identify the marginal model of the assets returns and second step is to find
the joint distribution via copulas. First, we present the time series model for marginal
distribution and then discuss the vine copula model in brief.

3.1. ARMA-GJR-GARCH model for marginal distribution

Mohammadi and Su [55] observe heavy tails and autocorrelation in asset returns. The
volatility also tends to increase more following a substantial price drop than following
a price rise of the same magnitude, known as the leverage effect. Advanced GARCH
models such as exponential-GARCH (EGARCH), GJR-GARCH, TGARCH, FIGARCH,
IGARCH [75], to name a few, are proposed over the years to capture the stylized features
in asset returns.

In this paper, we use the ARMA(p, q)-GJR-GARCH(1,1)-skewed-t-model to estimate the
marginal distributions of return series for all assets. In words of Brooks [16] “a GARCH
(1,1) model is sufficient to capture the volatility clustering in data, and rarely any higher
order model is estimated or even entertained in the academic finance literature”; we stick
to take order 1 in the GARCH term in our proposed strategy. The following describes
the ARMA(p, q)-GJR-GARCH(1,1) model:

rt = µ+

p∑

i=1

φirt−i +

q∑

j=1

θjεt−j + εt , (1)

εt = σtzt , (2)

σ2
t = ω + aσ2

t−1 + bε2t−1 + dIt−1ε
2
t−1 , (3)

where ω > 0, a, b ≥ 0, a+ d ≥ 0, and the indicator function It−1 is given by:

It−1 =

{
1, if εt−1 < 0
0, if εt−1 ≥ 0.

The ARMA(p, q) in equation (1) indicates that the current movement of return rt can be
explained by a constant term µ, p lags of its own past movement rt−1, . . . , rt−p, and q lags
of the residual terms εt−1, . . . , εt−q. In equation (2), the residual is defined as the product
of the conditional volatility σt and the standardized innovation zt. We assume that zt
follows a skewed-t distribution to capture both skewness and high kurtosis. Equation (3)
defines the evolution of the conditional volatility where It−1 captures the leverage effect.
The parameters a and b represent magnitude (or symmetric) and conditional variance,
respectively. A higher value of b indicates that the conditional variance will take a long
time to die out under a market stress and vice versa ([5]). The parameter d reflects the
leverage effect.
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3.2. Copulas

An n dimensional copula function C is given by:

C(u1, . . . , un) = P (U1 ≤ u1, . . . , Un ≤ un), (4)

where U1, . . . , Un are U [0, 1] distributed random variables and ui ∈ I = [0, 1], i = 1, . . . , n.

We recall the famous Sklar’s theorem which provides a relationship between distribution
functions and copulas.
Theorem 3.1. Sklar’s Thorem[70]
Let F1, . . . , Fn be the marginal distributions of an n-dimensional distribution function F .
Then there exists an n-dimensional copula C such that

F (x1, . . . , xn) = C(F1(x1), . . . , Fn(xn)) , ∀x = (x1, . . . , xn) ∈ Rn. (5)

If F1, . . . , Fn are all continuous then C is unique; otherwise, C is uniquely determined on
RangeF1 × . . . × RangeFn. Conversely, if C is an n-dimensional copula and F1, . . . , Fn
are 1-dimensional distribution functions, then the function F defined in (5) is an n-
dimensional distribution function with marginal distributions F1, . . . , Fn. More precisely,
we have,

C(u1, . . . , un) = F (F−1
1 (u1), . . . , F−1

n (un)), (6)

where F−1
i (·) denotes the quasi inverse of Fi , i = 1, . . . , n.

3.3. Vine Copulas

Let f be the multivariate probability density function (pdf) with distribution function
F . Also, consider f1, . . . , fn be the marginal pdfs of f with their respective distribution
functions F1, . . . , Fn. The copula density c(u1, . . . , un), for ui = Fi(xi), i = 1, . . . , n,
corresponding to the copula C(u1, . . . , un), is given by

c(u1, . . . , un) =
∂nC(u1, . . . , un)

∂u1 . . . ∂un
=
f(x1, . . . , xn)

n∏

i=1

fi(xi)

. (7)

Therefore, we have,

f(x1, . . . , xn) = c(F1(x1), . . . , Fn(xn))
n∏

i=1

fi(xi). (8)

Also, we know that the joint density function in terms of the conditional probability
density function f(· | ·) is given by

f(x1, . . . , xn) =
n∏

i=2

f(xi | x1, . . . , xi−1)× f1(x1). (9)
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Using (8) and (9), for n = 2, we can represent f(xi | xj) as follows:

f(xi | xj) = cij(Fi(xi), Fj(xj))× fi(xi), (10)

where cij(·, ·) denotes a bivariate copula density.

We use the notation ci,j|i1,i2,...,im to denote ci,j(F (xi | xi1 , . . . , xim), F (xj | xi1 , . . . , xim)) for
distinct indices i, j, i1, i2, . . . , im, satisfying i < j and i1 < i2 < . . . < im , where F (· | ·)
is the conditional distribution function of f(· | ·).
Applying (10) recursively, we obtain the following expression for f(xi | x1, x2, . . . , xi−1) :

f(xi | x1, x2, . . . , xi−1) = c1,i|2,3,...,i−1 × f(xi | x2, . . . , xi−1)

=
i−2∏

j=1

cj,i|j+1,...,i−1 × ci−1,i × fi(xi). (11)

Using (11) in (9), we finally get the following PCC:

f(x1, . . . , xn) =
n−1∏

j=1

n−j∏

i=1

ci,i+j|i+1,...,i+j−1 ×
n∏

s=1

fs(xs). (12)

Since the decomposition of joint density in (9) is not unique, there exist many such
iterative PCCs in (12).

Bedford and Cooke ([10], [11]) introduce Regular vines (R-vines) to organize the possible
decomposition of the joint density function f . The definitions and results stated in the
remaining section are taken from [10], unless otherwise cited.

R-vine: An n-dimensional R-vine V = {T1, . . . , Tn−1} is a sequence of n− 1 linked trees
with nodes Ni and edges Ei, i = 1, . . . , n− 1, such that

1. tree T1 has nodes N1 = {1, . . . , n} and set of edges E1;

2. for i ≥ 2, tree Ti has nodes Ni = Ei−1;

3. for i = 2, . . . , n−1 and edge e = (a, b) ∈ Ei, it must hold that |a∩ b| = 1 (proximity
condition).

The proximity condition ensures that the two nodes are connected in tree Ti if they have
been edges incident to a common node in tree Ti−1 (that is, nodes in the succeeding tree
are edges in the preceding tree).

R-vine copula: (F, V,B) is an R-vine copula specification if F = (F1, . . . , Fn) is a
vector of continuous invertible marginal distributions, V is an n-dimensional R-vine, and
B = {Be : e ∈ Ei, i = 1, . . . , n − 1} is the set of bivariate copulas on edges of trees
T1, . . . , Tn−1.
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The unique density function for an R-vine copula specification is given by:

f(x1, . . . , xn) =
n−1∏

i=1

∏

e∈Ei
cCe,a,Ce,b|De(FCe,a|De(xCe,a | xDe), FCe,b|De(xCe,b | xDe))×

n∏

s=1

fs(xs),(13)

where De is the conditioning set of edge e = (a, b) and Ce,a, Ce,b are the conditioned sets
of e.

4. Models Formulation

In this section, we present our linear programming formulations for the robust case con-
cerning mixture copulas for the two STARR ratio models. We first present our notations.

4.1. Notations

Consider a portfolio P of n-assets P = (w1, . . . , wn)′, where wi is the decision variable
denoting the proportion of total budget to be allocated to the i-th asset, i = 1, . . . , n, and
′ denotes the transpose. The set of admissible portfolios be denoted by

W = {w : w
′

= (w1, . . . wn), wi ≥ 0, i = 1, . . . , n}.

Let the investment horizon Γ be partitioned into an equal number of time points T to
observe the jth outcome (or a particular realization), j = 1, . . . , T, of each stock. Let
xij be the j-th outcome of i-th stock with probability pj and let x = [xij]n×T . Let xj
denotes the j-th column of x, then x = (x1, . . . , xT ). The mean return of i-th stock is
µi =

∑T
j=1 pjxij , i = 1, . . . , n. The j-th realization of return for the portfolio P can be

obtained as Xj =
∑n

i=1 wixij = w′xj , with probability pj, j = 1, . . . , T.

Throughout the paper, the benchmark index is a random variable denoted by I, and its
realizations are Ij, j = 1, . . . , T. We shall also be using the notation ζ+ = max{ζ, 0}.

4.2. STARR Ratio Model with Mixed CVaR and Mixed Deviation CVaR

Motivated by the twin facts that MCVaR and DMCVaR enjoy several desirable features
of an ideal risk measure ([36]), and the appropriateness of capturing the downside risks,
we propose to study the robust optimization models of STARR ratio with MCVaR and
DMCvaR.

For a positive CV aRδ measure5, the STARR ratio at δ-confidence level, δ ∈ (0, 1), is
defined as follows:

STARRδ(X) =





E(X)− E(I)

CV aRδ(I −X)
, if E(X) > E(I)

0, if E(X) ≤ E(I),

5Theoretically, CVaR of a loss variable -Y can assume any sign, however, in practice, it is a positive
unless the portfolio never yields a negative return.
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where,

CV aRδ(−Y ) = (1/(1− δ))
∫

−Y≥V aRδ
−Y dF−Y (r),

V aRδ(−Y ) = min{r : F−Y (r) = Pr(−Y ≤ r) ≥ δ, r ∈ R},

and F−Y (r) is distribution of the random loss variable −Y .

For a positive coherent risk measure CV aRδ(−Y ), the STARR ratio is a coherent ratio
in the sense that it has a positive coherent reward measure E(X)− E(I) ([64]).

In [36], we propose STARR ratio with MCVaR and STARR ratio with DMCVaR (in
notation, MCVaR4). The MCVaR is the weighted sum of CVaR values at different con-
fidence levels while MCVaR4, the deviation version of MCVaR, is obtained by replacing
the random variable in MCVaR by its dispersion from the mean value.

Let α be the grid of m distinct confidence levels αk, k = 1, . . . ,m, with 0 ≤ αm < . . . <
α1 < 1. The MCVaRα of the random variable −Y is defined as follows:

MCV aRα(−Y ) = λ1CV aRα1(−Y ) + . . .+ λmCV aRαm(−Y ),

where λk > 0, k = 1, . . . ,m, and
m∑

k=1

λk = 1.

The CVaR is the most studied coherent risk measure from the class of distortion risk
measures [8]. Distortion risk measure is associated with a non-decreasing function g :
[0, 1] → [0, 1], called the distortion function, such that g(0) = 0 and g(1) = 1. The
distortion function for the CVaR measure is continuous and concave (not strictly concave),
but not differentiable. Since the distortion function is concave, CVaR is also a spectral
risk measure [18]. Spectral risk measure [4] is described by a risk spectrum which assigns
higher weights to smaller quantiles. Since any convex combination of CVaRs generates a
spectral risk measure [18], MCVaR and MCVaR4 are also spectral risk measures.

For E(X) > E(I), the STARR ratios with MCVaRα and MCVaR4α are defined as follows:

MSTARRα(X) =
E(X)− E(I)

MCV aRα(I −X)
, (14)

MSTARR4α (X) =
E(X)− E(I)

MCV aR4α (I −X)
=

E(X)− E(I)

MCV aRα(I −X − E(I −X))
. (15)
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Note that unlikeMCV aRα(I−X) in the denominator ofMSTARRα(X), theMCV aR4α (I−
X) in (15) is always positive.

Following Rockafellar and Uryasev [65], the CVaRαk(I −X) can be approximated by the
following expression:

βk +
1

1− αk

T∑

j=1

pj (Ij −
n∑

i=1

xijwi − βk)+ ,

for finite T realizations of I −X.

The optimization model for the STARR ratio with MCV aRα(I − X) is the following
program:

(P1) max
β̃,w̃

n∑

i=1

µiw̃i − γE(I)

subject to
m∑

k=1

λkCV aRαk(γI − X̃) = 1,

n∑

i=1

w̃i = γ,

w̃i ≥ 0, i = 1, . . . , n,

where γ = 1/
∑m

k=1 λkCV aRαk(I − X) > 0, is a homogenizing variable, and for every

other variable ξ, ξ̃ = γξ, β̃ = (β̃1, . . . , β̃m).

The model (P1) gets translated into the following linear program:

(MSTARR) max
β̃,w̃

n∑

i=1

µiw̃i − γE(I)

subject to

m∑

k=1

λk(βk +
1

(1− αk)
T∑

j=1

pjũjk) = 1,

n∑

i=1

xijw̃i + ũjk − γIj + βk ≥ 0, k = 1, . . . ,m; j = 1, . . . , T,

n∑

i=1

w̃i = γ,

w̃i ≥ 0, i = 1, . . . , n,

γ > 0, ũjk ≥ 0, k = 1, . . . ,m; j = 1, . . . , T.

In the same spirit, the following linear program gets associated with the STARR ratio
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with MCV aR4α (I −X):

(MSTARR4) max
β̃,w̃

n∑

i=1

µiw̃i − γE(I)

subject to

m∑

k=1

λk(βk +
1

1− αk

T∑

j=1

pjũjk) = 1,

n∑

i=1

(xij − µi)w̃i + ũjk − γ(Ij − E(I)) + βk ≥ 0,

k = 1, . . . ,m; j = 1, . . . , T,
n∑

i=1

w̃i = γ,

w̃i ≥ 0, i = 1, . . . , n,

γ > 0, ũjk ≥ 0, k = 1, . . . ,m; j = 1, . . . , T,

where ũjk = (
∑n

i=1 µiw̃i−γE(I)− (
∑n

i=1 xijw̃i−γIj)−βk)+, k = 1, . . . ,m; j = 1, . . . , T,
are mT auxiliary variables, and γ is the homogenizing variable.

The optimal solutions of (MSTARR) and (MSTARR4) problems are sensitive to the
underlying distribution followed by portfolio return X. To design a robust solution strat-
egy, we use the copula representation of X and assume the copula to vary in a set of
mixture copulas.

4.3. Robust STARR Ratio Models

For a given uncertainty set U , the most common robust optimization (RO) model is given
by

(P ) min
x
fp(c, x)

subject to

gp(A, x) ≤ b,

c, A, b, p ∈ U,

where the objective function fp(c, x) and constraint function gp(A, x) of the decision vari-
able x involve the unknown parameters c, A, b, and p. The RO framework offers an
advantage in the sense that, for many favorite classes of the uncertainty sets U , like,
the mixture, boxed, and ellipsoidal sets, model (P ) can equivalently be translated into
tractable problems. The corresponding worst-case optimization of the problem (P ) takes
the following form:
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(WP ) min
x

max
c, A, b, p∈U

fp(c, x)

subject to

gp(A, x) ≤ b.

Similar to the problem (P), the optimization problems of maximizing STARR ratios also
suffer from the estimation error in the probability distribution. In the current article, we
wish to find out the robust solutions for both problems (MSTARR) and (MSTARR4)
for the case of mixture uncertainty set.

The mixture uncertainty set K̂ of the distribution function is the convex combination of
a finite number of priori distribution functions {K1, . . . , Kl}, given by

K̂ = {K : K =
l∑

s=1

ψsKs , ψs ≥ 0, s = 1, . . . , l,
l∑

s=1

ψs = 1}.

For a fixed portfolio w ∈ W and a grid of confidence levels α, the worst cases of (14) and
(15) with respect to K̂ are defined respectively as follows:

WMSTARRK(X) = min
K∈K̂

E(X)− E(I)

MCV aRα(I −X)
, (16)

WMSTARR4K(X) = min
K∈K̂

E(X)− E(I)

MCV aR4α (I −X)
. (17)

We propose to use copula theory to estimate the multiple priors for the distribution
functions for mixture uncertainty set. We invoke Sklar’s theorem (Theroem 3.1) to replace
the joint distributions functions with the corresponding copula functions. Since there is a
one to one correspondence between the joint distributions and copulas, corresponding to
the mixture distribution set K̂, there is an equivalent mixture copula set Ĉ as the convex
combination of a finite number of prior copulas {C1, . . . , Cl}, given by

Ĉ = {C : C =
l∑

s=1

ψsCs , ψs ≥ 0, s = 1, . . . , l,
l∑

s=1

ψs = 1}.

We shall be using the copula in place of probability distribution. The worst case models
of (14) and (15), with respect to Ĉ, are respectively defined as follows:

WMSTARRC(X) = min
C∈Ĉ

E(X)− E(I)

MCV aRα(I −X)
, (18)

WMSTARR4C (X) = min
C∈Ĉ

E(X)− E(I)

MCV aR4α (I −X)
. (19)
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We observe that although the worst case of MCVaRα(I−X), that is, supC∈ĈMCV aRα(I−
X) is a coherent risk measure [76], the worst case ratio in (18), wherever it is defined,
is not necessarily a coherent ratio in the sense defined by Rachev et al. [64]. Similar
observation holds for MCVaR4α (I −X) and the ratio in (19).

The corresponding worst case optimization models are as follows:

(WMSTARRC) max
w

min
C∈Ĉ

E(X)− E(I)

MCV aRα(I −X)
, (20)

(WMSTARR4C ) max
w

min
C∈ĉ

E(X)− E(I)

MCV aR4α (I −X)
. (21)

We now aim to formulate equivalent tractable optimization problems for (20) and (21).
In this context, we first take a noting of how to formulate the model for the worst case of
STARR ratio with MCVaR for the mixture copula.

Let g(w, x) : Rn → R be the portfolio loss function corresponding to the vector w. Define
a function ĝ(w, u) : In → R such that ĝ(w, u) = (goF−1)(w, u) = g(w,F−1(u)), which
maps the domain of the loss function from Rn to In. Also, let u follows a continuous
distribution with copula density function c. Then CV aRδ(w) is given as follows:

CV aRδ(w) = min
δ̂∈R

(δ̂ +
1

1− δ

∫

u∈In
(ĝ(w, u)− δ̂)+c(u) du).

Therefore, for a given grid of confidence levels α,

MCV aRα(w) = min
β

m∑

k=1

λk(βk +
1

1− αk

∫

u∈In
(ĝ(w, u)− βk)+c(u) du); β = (β1, . . . , βm) ∈ Rm.

And for C ∈ Ĉ, we have,

MCV aRα(w) = min
β

m∑

k=1

λk(βk +
1

1− αk

l∑

s=1

∫

u∈In
(ĝ(w, u)− βk)+ψscs(u)du). (22)

Similarly, for C ∈ Ĉ, the expected value of return function f̂(w, u) is given as follows:

l∑

s=1

ψs

∫

u∈In
f̂(w, u)cs(u) du. (23)

We denote

Gs
αk

(w, βk) = βk +
1

1− αk

∫

u∈In
(ĝ(w, u)− βk)+cs(u)du, s = 1, . . . , l.

Using (22) and (23), the mixture copula representation for the general STARR ratio with
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MCVaR is as follows:

∑l
s=1 ψs

∫
u∈In f̂(w, u)cs(u) du

minβ
∑l

s=1 ψs[
∑m

k=1 λkG
s
αk

(w, βk)]
= max

β

∑l
s=1 ψs

∫
u∈In f̂(w, u)cs(u) du

∑l
s=1 ψs[

∑m
k=1 λkG

s
αk

(w, βk)]
,

and the corresponding worst case becomes:

min
ψ∈Ψ

max
β

∑l
s=1 ψs

∫
u∈In f̂(w, u)cs(u) du

∑l
s=1 ψs[

∑m
k=1 λkG

s
αk

(w, βk)]
, (24)

where Ψ = {ψ : ψ = (ψ1, . . . , ψl), ψs ≥ 0, s = 1 . . . , l,
∑l

s=1 ψs = 1}.
We now derive a much simpler form of problem (24) for a general case of expected return
f̂ and loss function ĝ. We then give the specific forms of f̂ and ĝ in terms of simulations
to arrive at the solvable models for (WMSTARRC) and (WMSTARR4C ).

Since the ratio in (24) is a quasi concave in β and quasi linear in ψ, we can equivalently
write (24) as follows:

max
β

min
ψ∈Ψ

∑l
s=1 ψs

∫
u∈In f̂(w, u)cs(u) du

∑l
s=1 ψs[

∑m
k=1 λkG

s
αk

(w, βk)]
.

Thus, the worst case optimization problem is as follows:

max
w,β

min
ψ∈Ψ

∑l
s=1 ψs

∫
u∈In f̂(w, u)cs(u) du

∑l
s=1 ψs[

∑m
k=1 λkG

s
αk

(w, βk)]
. (25)

Applying Charnes and Cooper transformation [19] with γ > 0 as a homogenization vari-
able in (25), we obtain,

max
β̃,w̃

min
ψ

(
l∑

s=1

ψs

∫

u∈In
f̂(w̃, u)cs(u)du)

subject to

l∑

s=1

ψs

m∑

k=1

λkG
s
αk

(w̃, β̃k) = 1, (26)

where w̃ = wγ, β̃ = βγ, and

Gs
αk

(w̃, β̃k) = β̃k +
1

1− αk

∫

u∈In
(ĝ(w̃, u)− β̃k)+cs(u)du, s = 1, . . . , l.

Moreover, for ψ ∈ Ψ, we have following equivalent conditions:
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max
β̃,w̃

min
ψ

l∑

s=1

ψs

∫

u∈In
f̂(w̃, u)cs(u)du ⇐⇒ max

β̃,w̃
min
s=1,...,l

∫

u∈In
f̂(w̃, u)cs(u)du, (27)

l∑

s=1

ψs

m∑

k=1

λkG
s
αk

(w̃, β̃k) = 1 ⇐⇒
m∑

k=1

λkG
s
αk

(w̃, β̃k) = 1, s = 1, . . . , l. (28)

Using (27) and (28), along with θ = mins=1,...,l

∫
u∈In f̂(w̃, u)cs(u) du, we can equivalently

express problem (26) as follows:

max
w̃,β̃k

θ

subject to∫

u∈In
f̂(w̃, u)cs(u) du ≥ θ, s = 1, . . . , l,

m∑

k=1

λkG
s
αk

(w̃, β̃k) = 1, s = 1, . . . , l. (29)

Using some sampling technique ([65]), like Monte Carlo simulations, the problem in (29)
can easily be approximated to a linear program. Also, it is practically viable to solve the
portfolio optimization model for finite scenarios of returns.

Let T s be the sample size of scenarios generated from the copula Cs and us[q] denotes the

qth sample. The problem (29) can be written in the following form:

max
w̃,β̃k

θ

subject to

1

T s

T s∑

q=1

f̂(w̃, us[q]) ≥ θ, s = 1, . . . , l,

m∑

k=1

λk(β̃k +
1

T s(1− αk)
T s∑

q=1

(ĝ(w̃, us[q])− β̃k)+) = 1, s = 1, . . . , l. (30)

For WMSTARRc in (20), f̂(w̃, us[q]) = (w̃ − γŵ)′us[q] is the portfolio return function, and

ĝ(w̃, us[q]) = (−w̃ + γŵ)′us[q] is the portfolio loss function in model (30). Also, ŵ is the
known weight vector of the constituents applied in formulating the benchmark index.
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Finally, for WMSTARRC , model (30) is equivalent to solving the following linear program:

(WSTARRC) max
β̃,w̃

θ

subject to

1

T s

T s∑

q=1

w̃′us[q] − γŵ′us[q] ≥ θ, s = 1, . . . , l,

m∑

k=1

λk(β̃k +
1

(1− αk)T s
T s∑

q=1

ũskq) = 1, s = 1, . . . , l,

ũskq + (w̃′us[q] − γŵ′us[q]) + β̃k ≥ 0, k = 1, . . . ,m;

q = 1, . . . , T s; s = 1, . . . , l,
n∑

i=1

w̃i = γ,

w̃i ≥ 0, i = 1, . . . , n,

ũskq ≥ 0, k = 1, . . . ,m; q = 1, . . . , T s; s = 1, . . . , l.

For the case of WMSTARR4C in (21), the portfolio return function f̂(w̃, us[q]) = (w̃ −
γŵ)′us[q], and the portfolio loss function is ĝ(w̃, us[q]) = (−w̃ + γŵ)′us[q] − (−w̃ + γŵ)′us[q0]

in model (30).

The model in (30) yields the following linear programming problem to be solved:

(WSTARR4C ) max
β̃,w̃

θ

subject to

1

T s

T s∑

q=1

w̃′us[q] − γŵ′us[q] ≥ θ, s = 1, . . . , l,

m∑

k=1

λk(β̃k +
1

(1− αk)T s
T s∑

q=1

ũskq) = 1, s = 1, . . . , l,

ũskq + (w̃′us[q] − γŵ′us[q])− (w̃′us[q0] − γŵ′us[q0]) + β̃k ≥ 0,

k = 1, . . . ,m; q = 1, . . . , T s; s = 1, . . . , l,
n∑

i=1

w̃i = γ,

w̃i ≥ 0, i = 1, . . . , n,

ũskq ≥ 0, k = 1, . . . ,m; q = 1, . . . , T s; s = 1, . . . , l.

For the comparison purpose, we solve models (WSTARRC) and (WSTARR4C ) for a
special case taking s = 1, and the single copula C1 as the Gaussian copula. In that case,
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we call the two models by (STARRG) and (STARR4G ), respectively.

5. Methodology and Data

This section explains the step by step procedure adopted in this paper to carry out the
empirical analysis of the proposed robust portfolio optimization models. The section also
explains the data used in the present study.

5.1. The Methodology

The step-wise methodology adopted in this paper is described in the following Algorithm
1.

Algorithm 1 A step wise procedure for modeling marginals and joint dependence via
copula

1: procedure Methodology
2: Transform the price series into log returns using

xij ←
Pij
Pij−1

, i = 1, . . . , n; j = 1, . . . , T,

where Pij and Pij−1 are the closing prices of the i-th index on j-th and (j − 1)-th
day/week, respectively, and T is the number of days in the period considered.

3: Use ARMA-GJR-GARCH process and estimate the marginals Fi, i = 1, . . . , n,
for each return series. Filter the return series by fitting an ARMA(p, q)-GJR-
GARCH(1,1) model, to get the residuals. Standardize the residuals to obtain the
standardized residuals.

4: Using the marginal distribution Fi of each return series, transform the standardized
residuals to the uniform random variable Ui, i = 1, . . . , n, in the interval [0, 1] so as
to fit the copula. Use Kolmogorov-Smirnov (KS) test to ensure that the distribution
transformed residuals is uniform U [0, 1].

5: Estimate the Regular vine tree structure using the next described Algorithm 2.
6: Using the selected tree and copula parameters, simulate S random samples from

the estimated joint probability distribution.
7: Transform the simulated random samples to the original scales of the log returns

using the inverse quantile function of the marginals.
8: Reintroduce the autocorrelations and heteroscedasticity observed in the original

return series using the mean and variance equations of the fitted ARMA(p, q)-GJR-
GARCH(1,1) model to get a matrix [r1 r2 · · · rn]S×n of the simulated returns for
each associated marginal distribution.

9: Use these simulated returns data to solve the proposed robust optimization models
and obtain the optimal portfolios.

Dissmann et al. [25] suggest the following sequential procedure (Algorithm 2) to identify
and estimate an R-vine structure.
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Algorithm 2 Sequential procedure of identifying and estimating R-vine tree structure

1: procedure VINE TREE structure
2: Using Prim’s algorithm, the tree with maximum sum of the absolute empirical

Kendall’s tau correlation coefficients is selected.
3: The pair-copula families associated with the tree specified in the previous step are

chosen by minimizing the AIC (Akaike Information Criterion) value.
4: The parameters of the selected copulas are estimated by the maximum likelihood

methods.
5: The transformed observations to be used in the next tree are computed using

conditional h-function.
6: Using the transformed observations, the above step are repeated in all the remain-

ing trees in regular vine.

5.2. The Data

Three sets of sample data are considered for the present empirical study. All data sets
are obtained from EIKON Thomson Reuters data stream. The first two data sets are
evidence of bearish markets while the third data set comprises of different market cycles.

The first data set consists of daily closing prices of six indices: S&P EURO (Europe),
CNX NIFTY 50 (India), DAX 30 (Germany), Dow Jones (USA), BSE Sensex 30 (India)
and Gold ETF. The data belongs to the period April 2007–April 2009. This period is
chosen to test the performance of the proposed models in the most talked about financial
crisis witnessed in 2008. We took the in-sample period from April 2007 - mid September
2008 (370 realizations), and the out-of-sample period mid September 2008 - April 2009
(160 realizations).

The second data set comprises weekly closing prices of equity indices of five PIIGS
countries: PSI-20 (Portugal), FTSE MIB (Italy), ISEQ-20 (Ireland), ATHEX compos-
ite (Greece) and IBEX-35 (Spain). A week is taken as Wednesday-to-Tuesday to mini-
mize the weekend effects (see, [67]). The sample period is February 2000 - August 2017
with the in-sample period February 2000- March 2003 (164 realizations), and rest is the
out-of-sample period comprising of 753 observations.

The third data set consists of daily closing prices of 4 equity indices namely, AEX (Eu-
rope), FTSE (Europe), NIKKEI (Japan) and MSCI (World index) for a period from 21
May 1993–18 May 2018; 6521 observations, and about 25 years. This data is used for
carrying out the rolling window analysis.

6. Empirical Analysis

The returns of each index are calculated using xij = ln
Pij
Pij−1

, i = 1, . . . , n; j = 1, . . . , T,

where Pij and Pij−1 are the closing prices of the i-th index on j-th and (j−1)-th day/week,
respectively.
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For all the models, we fix the 1/m naive strategy6 as the benchmark index I to obtain the
optimal portfolios in each in-sample period. Furthermore, over the out-of-sample periods,
we obtain the performance of all portfolios with respect to the 1/m naive strategy portfolio
by evaluating the performance measures for the series X − I, where I is the return series
of the 1/m naive portfolio.

For all data sets, we calculate 12 performance measures namely, excess mean return
(EMR), Sortino ratio, downside deviation (DD), Treynor ratio, VaR, CVaR, Rachev ratios,
and VaR ratios, at 97% and 95% level of confidence for comparative analysis. We provide
a brief explanation of these measures in the Appendix at the end of the paper.

We present the analysis of the first data set. A similar analysis is carried out on the
second and third data sets.

6.1. Results: First Data Set

Table 1 displays the descriptive statistics along with the results of three statistical tests,
Augmented Dickey-Fuller (ADF), Jarque-Bera (JB), and ARCH-LM test to fetch various
properties of returns of six indices in first data set over the in-sample period.

Table 1: Summary statistics of six indices along with the outcomes of three statistical tests over the
in-sample period; the value 1 indicates rejection of the null hypothesis for a given statistical test, while
0 is used for accepting the same.

GOLD CNX DAX DJIA BSE S&P 500
Mean 0.000264 0.000026 -0.00025 -0.00017 -8E-06 -0.00023
Min -0.04327 -0.03954 -0.03228 -0.01962 -0.03342 -0.02097
Max 0.031855 0.029187 0.02502 0.015146 0.027835 0.018038
Std. dev 0.005784 0.00856 0.005512 0.005098 0.0085 0.005408
Skewness -0.80817 -0.24779 -0.49684 -0.22804 -0.15088 -0.22268
Kurtosos 14.86179 5.107722 7.223963 3.821175 4.486202 3.958075
ADF test 1 1 1 1 1 1
JB test 1 1 1 1 1 1
ARCH-LM test 1 1 1 1 1 1

The negative values of skewness and high values of kurtosis suggest non-normality in the
return distributions of all the indices. The same is confirmed by JB test. The ADF test
rejects the null hypothesis of a unit root in all indices at 3% critical level. The ARCH-
LM test indicates presence of conditional heteroscedasticity in returns of all the indices,
thereby suggesting the relevance of GARCH model to fit in their distributions.

We use GJR-GARCH(1, 1) to model the conditional volatility and ARMA(p, q) to account
for the serial correlation in return series of six indices. We estimate the ordered parameter
pair (p, q) in ARMA(p, q) model for the eight pairs in the set

6The 1/m naive portfolio strategy stems from the allocation of a fraction 1/m of a budget to each of
the available assets from the corresponding index in each in-sample period.
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{(0, 1), (0, 2), (1, 0), (2, 0), (1, 1), (1, 2), (2, 1), (2, 2)} by minimizing Bayes information cri-
terion (BIC). Table 2 reports the analysis. The BIC value corresponding to the ordered
pair (p, q) = (0, 1) are found to be best for all indices.

Table 2: Bayes information criterion (BIC) values of ARMA(p, q) model for different choices of parameter
pair (p, q) on the return series of six indices over the in-sample period.

(1,0) (0,1) (2,0) (0,2) (2,1) (1,2) (1,1) (2,2)
GOLD -7.83396 -7.834 -7.81729 -7.81725 -7.8025 -7.80242 -7.81858 -7.8038
CNX -6.82262 -6.82262 -6.81597 -6.81601 -6.80073 -6.80213 -6.80836 -6.80459
DAX -7.64107 -7.64146 -7.62938 -7.62815 -7.61541 -7.61508 -7.63027 -7.60418
DJIA -7.73529 -7.73608 -7.71883 -7.71893 -7.70573 -7.70646 -7.72104 -7.69057
BSE -6.82418 -6.82472 -6.81597 -6.81539 -6.80223 -6.8014 -6.81211 -6.78905
S&P 500 -7.63359 -7.63659 -7.62096 -7.62242 -7.6117 -7.61164 -7.62834 -7.5957

Table 3 presents the values of the parameters for the best fitted ARMA(0, 1)-GJR-
GARCH(1, 1) model (1) – (3).

Table 3: The estimated parameters for the best fit ARMA(0, 1)-GJR-GARCH(1, 1) model calculated over
the in-sample data where the residuals follow skewed student’s t distribution with parameters τ and ν,
the skewness and shape parameters, respectively.

GOLD ETF CNX DAX DJIA BSE S&P 500
µ 0.000256 0.000379 -0.000144 -0.000178 0.000387 -0.000286
θ1 -0.000234 -0.003210 -0.067705 -0.128432 0.028155 -0.168949
ω 0.000000 0.000004 0.000001 0.000000 0.000003 0.000000
a 0.081789 0.032964 0.000001 0.000000 0.027254 0.000000
b 0.976821 0.768784 0.874894 0.928342 0.794079 0.924413
d -0.115537 0.334411 0.150771 0.147402 0.319940 0.156270
τ 1.079301 0.959575 0.842914 0.819655 0.970291 0.797416
ν 5.418194 5.071561 10.003472 6.753333 5.454994 7.366613

From the skewed student’s t distribution, the asymmetric parameter τ is less than one
for five return series indicating left skewness while it is more than one for GOLD ETF.
The positive values of b indicate presence of time dependency in conditional volatility in
all indices. The positive values of d for all except GOLD ETF indicating existence of
leverage effects i. e., the volatility increases with the negative sentiments for all indices
except GOLD ETF. Moreover, from the values of shape parameter ν, we observe that
the degree of freedom is less than 15 for all indices which favors application of skewed
student’s t distribution in fitting the residual terms.

To further confirm the adequacy of ARMA(0, 1)-GJR-GARCH(1, 1) model for estimating
the marginal distributions, in addition, we apply Ljung-Box (LB) test to check serial
dependence in residuals for all indices followed by Kolmogorov-Smirnov (KS) test on the
U [0, 1] transformed residual variables using the specified distribution. The summary from
the two tests is reported in Table 4 along with the values of the Pearson’s correlation
coefficients.

The alternative hypothesis of both the tests is rejected at 1% significance level thereby
confirming that the residuals are independent and identically distributed uniform variates
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Table 4: The Pearson’s correlation coefficients and the outcomes of KS and LB tests obtained from the
in-sample data; the value 0 indicates rejection of the alternative hypothesis for a given statistical test,
while 1 is used otherwise.

GOLD ETF CNX DAX DJIA BSE S&P 500
GOLD ETF 1 -0.07935 -0.09627 -0.09021 -0.09889 -0.07741
CNX -0.07935 1 0.39608 0.17702 0.97743 0.19193
DAX -0.09627 0.39608 1 0.51961 0.40643 0.54019
DJIA -0.09021 0.17702 0.51961 1 0.19760 0.96852
BSE -0.09889 0.97743 0.40643 0.19760 1 0.21407
S&P 500 -0.07741 0.19193 0.54019 0.96852 0.21407 1
KS test 0 0 0 0 0 0
LB test 0 0 0 0 0 0

for all six indices. It also proves that the return series are correctly modeled by model
(1)–(3).

Pearson’s correlation coefficients between GOLD ETF and other indices are small and
negative indicating different price movements in GOLD ETF vis a vis equity indices,
which is somewhat an expected phenomena.

We next follow Algorithm 2 to identify the tree structure and best fit pair-copula. We
use five copula families viz., Gumbel, Frank, Clayton, Guassian and Joe, in our present
analysis.7. A brief description of the five copulas is jotted down in the Appendix.

Thereafter, we simulate 1000 paths, each of 500 scenarios, for all six indices. Each simu-
lated path is used as the in-sample data to solve four models, (WSTARRC), (STARRG),
(WSTARR4C ) and (STARR4G ). The optimal portfolios are named (WSC(X)), (SG(X)),
(WS4C (X)), and (S4G (X)), respectively. In this way, we obtain 1000 optimal portfolios
for each model.

We compute the out-of-sample returns of optimal portfolios to obtain 1000 out-of-sample
return series for each of the four models. We then take the average of these 1000 out-of-
sample series to obtain one out-of-sample return series for each model.

Table 5 records the out-of-sample performance of the portfolios from the four models on
excess mean return (EMR), Sortino ratio, downside deviation (DD), Treynor ratio, VaR,
CVaR, Rachev ratios, and VaR ratios at 97% and 95% level of confidence.

We observe that the portfolios, (WSC(X)) and (WS4C (X)), improve their respective coun-
terparts (SG(X)) and (S4G (X)), in all performance measures.

The results designate that, to carry out worst-case analysis of robust STARR ratio opti-
mization models, it is more efficacious to utilize several antecedently selected copulas to
capture the changing dynamics of the market than a single Gaussian copula.

7We first select a copula family among these five. We determine the best pair copula at each node
amongst the various possible rotations of the chosen copula family that are available in the R package
VineCopula. We follow this procedure with each of the five copulas.
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Table 5: The out-of-sample values of the performance measures of four portfolios (WSC(X)), (WS4C (X)),

(SG(X)) and (S4G (X)) in the out-of-sample period Sept 2008 - April 2009 of first data set.

(WSC(X)) (SG(X)) (WS4C (X)) (S4G (X))
EMR 0.000652 0.000559 0.000647 0.000578
Sortino ratio 0.144156 0.135112 0.143852 0.137492
DD 0.004563 0.005053 0.004582 0.00494
Treynor Ratio 0.029412 0.005876 0.028034 0.010202
CVaR95% 0.015045 0.015924 0.015066 0.015633
CVaR97% 0.01705 0.018589 0.017101 0.018248
VaR95% 0.010059 0.010546 0.010053 0.010194
VaR97% 0.011875 0.012594 0.011893 0.012438
Rachev95% 0.00022 0.000177 0.000218 0.000186
Rachev97% 0.000274 0.000221 0.00027 0.00023
VaR95% Ratio 0.00012 0.000105 0.000119 0.000108
VaR97% Ratio 0.000162 0.000122 0.00016 0.000129

6.2. Results: Second Data Set

Table 6 presents the final values of the performance measures from the four models in the
out-of-sample period of the second data set.

From Table 6, the findings are very similar to those from Table 5. The (WSC(X)) and
(WS4C (X)) exhibit superior performance than their respective counterparts (SG(X)) and
(S4G (X)), in almost all performance measures.

Table 6: The out-of-sample values of the performance measures of four portfolios (WSC(X)), (WS4C (X)),

(SG(X)) and (S4G (X)) on the data of PIIGS countries in the out-of-sample period April 2003 - August
2017.

(WSC(X)) (SG(X)) (WS4C (X)) (S4G (X))
EMR 0.000091 0.000055 0.000088 0.000052
Sortino ratio 0.028965 0.018265 0.028218 0.017471
DD 0.003136 0.003003 0.003120 0.003002
Treynor Ratio 0.003891 0.000705 0.003643 0.000493
CVaR95% 0.032422 0.032392 0.032416 0.032400
CVaR97% 0.037496 0.037143 0.037452 0.037155
VaR95% 0.022318 0.023035 0.022288 0.022824
VaR97% 0.027506 0.027085 0.027520 0.027015
Rachev95% 0.000109 0.000102 0.000107 0.000102
Rachev97% 0.000141 0.000133 0.000140 0.000133
VaR95% Ratio 0.000057 0.000053 0.000057 0.000052
VaR97% Ratio 0.000080 0.000078 0.000080 0.000078

The empirical findings demonstrate that the robust optimization with mixture copulas
captures the underlying dependency exceedingly well than a single copula. The worst-case
copula approach in the MCVaR framework provides immunization against the worst loss
in all possible realizations of uncertainty during periods of crisis.

We next present the empirical study on the third data set which embraces all types of
market scenarios.
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6.3. Third Data Set: Rolling Window Analysis

The findings of the previous two empirical analysis, favoring the proposed models over
their Gaussian copula counterparts especially when the markets are in stress, encouraged
us to check the performance of the proposed scheme and models on the third data set
which embraces all types of market scenarios. We use the rolling window approach to
perform the empirical analysis on the third data set.

Moreover, we extend the scope of our comparative analysis by including three more models
viz, Markowitz model [53], and two multivariate GARCH models - DCC GARCH [28] and
aDCC GARCH ([17]).

For d1 and d2 be the respective time lengths (in days) for the in-sample and out-of-sample
periods, we solve our models for five different pairs of (d1, d2) values, specifically: (252,
126), (252, 252), (504, 252), (1260, 252) and (1260, 504).

We follow the rolling window approach of in-sample length d1 and out-of-sample length
d2 on each of these period. That is, the first in-sample period is 1, . . . , d1 with d1 +
1, . . . , d1 + d2 as the out-of-sample period; the next in-sample period gets forward by d2

to 1 + d2, . . . , d1 + d2 with next d1 + d2 + 1, . . . , d1 + d2 + d2 out-of-sample period, and so
on.

The following table 7 reports the number of out-of-sample periods for each pair of (d1, d2).

Table 7: The in-sample and out-of-sample periods of analysis (in days) along with total number of
out-of-sample rolling windows.

d1 d2 Total no. of out-of-
sample windows

252 126 49
252 252 24
504 252 22
1260 252 20
1260 504 10

Similar to the case of copulas, we also solve (MSTARR) and (MSTARR4) models for the
1000 simulated paths, each having 500 scenarios, where the paths are obtained from the
multivariate GARCH DCC and aDCC models. We name so formed optimal portfolios as
(SDCC(X)) and (SaDCC(X)) from (MSTARR) model with simulations from GARCH
DCC and GARCH aDCC model, respectively. (SDCC4(X)) and (SaDCC4(X)) from
(MSTARR4) model with simulations from GARCH DCC model and GARCH aDCC
model, respectively.

For each out-of-sample period, the out-of-sample returns series are obtained for 1000
optimal portfolios. These series are then converted into a single out-of-sample return
series by taking the average returns. This analysis is performed for each value of (m,n)
listed in Table 7 over all out-of-sample windows.

In Markowitz mean-variance model, we set the mean in the constraint to be the in-sample
average return of the corresponding naive portfolio. The optimal portfolio obtained from
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the Markowitz model is named (MW (X)). Note that we solve the Markowitz model using
original historical data for all periods of (d1, d2) with the same rolling window scheme as
for the other models.

Since the complete analysis is enormous to present here, we report only one instance of it
when (d1 = 1260, d2 = 504). The out-of-sample performance of the portfolios (WSC(X)),
(SG(X)), (WS4C (X)), (S4G (X)), (MW (X)), (SDCC(X)), (SaDCC(X)), (SDCC4(X))
and (SaDCC4(X)), obtained from the nine models are recorded in Tables 8 and 9.

The portfolios (WSC(X)) and (WS4C (X)) improve the other models on EMR and Treynor
ratio in a total of 9 out of 10 out-of-sample windows. The proposed portfolios also
dominate the other portfolios in terms of Sortino ratio in all the windows. Although,
Markowitz portfolios achieve least values for VaR, CVaR (at both 95% and 97%), and
downside deviation 80%, but the proposed portfolios outperform the Markowitz portfolio
by achieving higher values of Rachev ratio and VaR ratios, at both 95% and 97%, in 8
out of 10 windows. The proposed portfolios thus help to achieve our aim of maximizing
the reward-risk ratios thereby maintaining a better trade-off between risk and return.

To sum up our analysis, we concatenate the out-of-sample returns series of each out-
of-sample window corresponding to the model. These return series are then used for
evaluating the performance measures as reported in Table 10.

It is worth noting that the proposed worst case portfolios have higher EMR, Sortino ratio
and Treynor ratio.

7. Conclusions

Portfolio return is a multivariate random variable whose distribution depends on the
underline dependence structure among its constitutes. This dependency needs to be
capture carefully for correct investment decisions. Copula theory is a widely accepted
mechanism to capture the dependency structure by accounting for most stylized features
present in the financial data, like asymmetry, fat-tails, and nonlinearity. However, the
ever-changing market dynamics is more complicated to be adequately represented by a
single copula function. We propose to use mixture copulas, a linear combination of various
copulas, to fit the dependence structure in portfolio returns.

The present study provides a robust optimization tool to obtain portfolios with enhanced
return-reward trade-off by conducting the worst-case analysis of two variants of STARR
ratio models with the mixed conditional value-at-risk (MCVaR) and the deviation MCVaR
(DMCVaR). We proposed two models to maximize the minimum (worst) value of two
variants of STARR ratio calculated for many feasible copulas. We use the regular vine
copula to capture the dependence structure among the assets after fitting the marginal
distribution of each asset by the GJR-GARCH model. We take Gumbel, Frank, Clayton,
Gaussian and Joe copulas in our empirical analysis.

We perform an empirical analysis on three datasets, the first data consisting of six indices
including Gold ETF, the second data is of Eurozone crisis period of the PIIGS countries,
and the third data of a relatively long period is comprising of 4 global indices. We
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conduct a comparative analysis of the proposed worst-case strategy with the case when
only Gaussian copula is used to capture dependency. Furthermore, we used the Markowitz
model, naive portfolio and two multivariate GARCH models in our comparative analysis.

The extensive empirical analysis of several indices from different markets and across dif-
ferent time periods exhibits the superior performance of the proposed robust reward-risk
models on EMR, Sortino ratio, Rachev ratio, VaR ratio, and Treynor ratio.
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Appendix

Following is the description of the performance measures considered for the out-of-sample
analysis:

• Excess Mean Return (EMR): It is defined as the average of the difference between
the portfolio return and the benchmark index return

EMR =

∑T
j=1(Xj − Ij)

T
,

where Xj and Ij are respectively the j-th realization, j = 1, . . . , T , of the tracking
portfolio and the benchmark index. It measures the improvement of the portfolio
over the benchmark index in terms of the return value.

• Sortino ratio: It is the ratio of EMR to the under achievement from the benchmark
index as the measure of risk

1
T

∑T
j=1(Xj − Ij)√∑T

j=1
(min{Xj−Ij , 0})2

T

.
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Higher values of this ratio are desirable.

• Rachev Ratio (RR): It measures the right tail reward potential relative to the left
tail risk in a non-Gaussian setting. Intuitively, it allows a trade off between the
potential of extreme positive returns to the risk of extreme losses. The ratio is
defined as follows:

RRα1,α2 =
CV aRα1(X − I)

CV aRα2(I −X)
, α1, α2 ∈ (0, 1).

Larger values are worthwhile.

• VaR ratio: It the ratio of the best value to the worst value of the portfolio with
respect to the benchmark index measured using VaR

V aRα1,α2 =
V aRα1(X − I)

V aRα2(I −X)
, α1, α2 ∈ (0, 1).

• Downside deviation (DD): It depicts the under achievement of portfolio from the
index. It is given by √√√√

T∑

j=1

((Ij −Xj)+)2

T
.

• Treynor ratio (TR): The Treynor ratio uses beta of the portfolio as the volatility
measure and is defined as

TR =
1
T

∑T
j=1(Xj − Ij)

β
.

Archimedean Copulas

Let φ be a continuous, strictly decreasing function from I = [0, 1], to [0,∞] such that
φ(1) = 0. The pseudo-inverse of φ is the function φ[−1], with Domφ[−1] = [0,∞] and
Ranφ[−1] = I, is given by

φ[−1](t) =

{
φ−1(t), 0 ≤ t ≤ φ(0)
0, otherwise.

Further, let φ be convex, and C : I2 → I be given by

C(u, v) = φ[−1](φ(u) + φ(v)).

Then, C is called an Archimedean copula generated by the generator function φ.

In the following, we present a brief description of aforementioned copulas.

Let u, v ∈ I.
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(1) Frank copula is defined as follows:

C(u, v) =
−1

θ
ln
(

1 +
(e−θu − 1)(e−θv − 1)

e−θ − 1

)
, θ ∈ (−∞,∞) \ {0},

with generator function

φ(t) = − ln
(

exp(−θt)−1
exp(−θ)−1

)
.

This copula is radially symmetric and allows for both positive dependence (when θ
is positive) and negative dependence (when θ is negative). The larger is the value of
θ the greater is the dependence between the variables. This copula can not capture
the tail dependence.

(2) Gumbel copula is defined as follows:

C(u, v) = exp
(

((− lnu)θ + (− ln v)θ)
1
θ

)
, θ ∈ [1,∞),

with generator function
φ(t) = (− ln t)θ.

This copula is asymmetric. It allows for positive dependence and captures upper
tail dependence; the larger values of θ indicate greater dependence between the
variables.

(3) Clayton copula is defined as follows:

C(u, v) = (u−θ + v−θ − 1)
−1
θ , θ ∈ (0,∞),

with generator function

φ(t) =
1

tθ
− 1.

It is specially used to capture the lower tail dependence. The larger is the value of
the parameter θ, the greater is the dependence between the variables.

(4) Gaussian copula is defined as follow:

C(u, v) =

∫ Φ−1(u)

−∞

∫ Φ−1(v)

−∞

1

2π(1− θ2)1/2
exp{−x

2 − 2θxy + y2

2(1− θ2)
}dxdy,

where Φ−1(.) is the inverse of the standard univariate Gaussian distribution function.
This copula is symmetric and shows no tail dependence.

(5) Joe copula is defined as

C(u, v) = 1−
[
(1− u)θ + (1− v)θ − (1− u)θ(1− v)θ

]1/θ
, θ ∈ [1,∞),

with generator function
φ(t) = − log

(
1− (1− t)θ

)
.

It is used to capture upper tail dependence.
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